International Journal for Sciences and Technology

المجلة الدولية للعلوم والتكنولوجيا

Volume 13. No. 1/ March 2018 / ISSN: 2305-9346

A Refereed Scientific Journal with specialties of Biological & Medical Sciences

مجلة علمية محكمة متخصصة في العلوم البيولوجية والطبية

Issued By:

The International Centre for Advancement of Sciences and Technology

In a cooperation with TSTC - Jordan

IJST Contact Information:
P.O. Box 2793 Amman 11953 Jordan
Tel. +962796543469
E-mails: info@ijst-jo.com / ijst.jordan@yahoo.com
URL: www.ijst-jo.com
Al-Shammari , Abdul-Jabbar N.
(Editor-in-Chief)
Professor of Microbiology / Dept. of Medical Laboratory Sciences / Faculty of Sciences / Al-Balqa’ Applied University / Al- Salt / Jordan
shammari@ijst-jjo.com

Abdul-K Shammari , Abdul-K Jabbar N.
(Editor-in-Chief)
Professor of Microbiology / Dept. of Medical Laboratory Sciences / Faculty of Sciences / Al-Balqa’ Applied University / Al- Salt / Jordan
shammari@ijst-jjo.com

Abbas, Jamal A.
Professor of Plant Ecophysiology / Faculty of Agriculture / Kufa University / Iraq
phdjamal@yahoo.com

Abdul-K Shammari, Abdul-K Jabbar N.
(Editor-in-Chief)
Professor of Microbiology / Dept. of Medical Laboratory Sciences / Faculty of Sciences / Al-Balqa’ Applied University / Al- Salt / Jordan
shammari@ijst-jjo.com

Abdul-K Hameed, Hayder M.
PhD in Environmental Engineering / Environmental Engineering Dept./ Faculty of Engineering/ University of Baghdad/ Iraq
hayderalmunshi@yahoo.com

Abdul- Ghanizi, Zaki G.
Professor of Pharmaceutical Sciences / Amman Private University / Jordan
zaki_abdulghani@yahoo.com

Abdul- Ghanizi, Zaki G.
Professor of Pharmaceutical Sciences / Amman Private University / Jordan
zaki_abdulghani@yahoo.com

Abdul-Hameed, Hayder M.
PhD in Environmental Engineering / Environmental Engineering Dept./ Faculty of Engineering/
University of Baghdad/ Iraq
hayderalmunshi@yahoo.com

Abdullah, Ahmed R.
PhD in Cancer Immunology and Genetics
/ Biotechnology Research Centre / Al- Nahrain University / Baghdad / Iraq
ahmedrushdi1970@yahoo.com

Abdul- Hameed, Hayder M.
PhD in Environmental Engineering / Environmental Engineering Dept./ Faculty of Engineering/
University of Baghdad/ Iraq
hayderalmunshi@yahoo.com

Al- Daraji, Hazim J.
Professor of Avian Reproduction and Physiology / Animal Resources Dept./ College of Agriculture /
University of Baghdad / Iraq
prof.hazimaldaraji@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Douri, Atheer A. R.
PhD in Microbiology/Faculty of Veterinary Medicine/ University of Baghdad / Iraq
aaldouri96@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al-Dulaimy, Ahmed F.
Professor of Plant Nutrition and Horticulture/
Dept. of Horticulture and Landscape Gardening/
Faculty of Agriculture / University of Anbar / Iraq
ahmedzbar@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Faris, Abdulhouri A.
Professor of Surgery / Dept. of Surgery and Obstetrics / College of Veterinary Medicine /
University of Basrah / Iraq
Vetedu2000@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Jashami, Najim A.
Professor of Nuclear Material Sciences / Dept. of Physics / College of Sciences / Kufa University / Iraq
naj_phys@yahoo.com

Al- Mathkhoury, Harith J F.
Professor of Medical Microbiology / Dept. of Biology / College of Sciences / University of Baghdad/ Iraq
harith_fahad@yahoo.com

Al- Murrani, Waleed K.
Professor of Genetics and Biostatistics / University of Plymouth/ UK
prof.murrani@yahoo.com

Al- Murrani, Waleed K.
Professor of Genetics and Biostatistics / University of Plymouth/ UK
prof.murrani@yahoo.com

Al- Samarrai, Taha H.
PhD. in Microbiology / Dept. of Medical Laboratory Sciences / College of Applied Sciences /
University of Samarra / Iraq
tahaalsamarrai@gmail.com

Al- Saqr, Ihsan M.
Professor of Parasitology/ Faculty of Sciences / University of Baghdad / Iraq
drihsanalsagur@yahoo.com

Al- Shamaony, Loai
Professor of Biochemistry / Faculty of Pharmacy /
Maj University for Sciences and Technology / Egypt
loalshamaony@yahoo.com

Al- Shebani, Abdullah S.
PhD in Dairy Sciences and Technology / Food Sciences Dept./ Faculty of Agriculture / Kufa University / Iraq
Agrifood43@yahoo.com

Khamas, Wael
Professor of Anatomy and Histology / College of Veterinary Medicine / Western University of Health Sciences / Pomona -California/ USA
wael_khamas@yahoo.com

Lafi, Shehab A.
Professor of Medical Microbiology / College of Medicine / Al- Anbar University / Iraq
shehab_6555@gmail.com

Editorial Executive Director
Pharmacist. Nansi Elian
Amman- Jordan
ijst.jordan@yahoo.com
Dear Colleagues,

IJST was a fruitful effort issued by the International Centre for Advancement of Sciences and Technology – ICAST, which tries to take part in both globalization and revolution in information and communication technologies, because S&T development becoming not only the key elements of economic growth and industrial competitiveness, but also essential for improving the social development, the quality of life and global environment. ICAST took then a decision to establish a scientific alliance with TSTC (Tharwa for scientific Training & Consultations) and this alliance comes to support the efforts towards publishing IJST.

Today, we announce a new issue of our journal, that is the first issue from the thirteen volume of IJST, March, 2018.

Finally, I hope that all significant figures of sciences whom joined the editorial board, the researchers, and the readers of our journal will keep IJST between their eyes and contribute in continuing its journey, with their remarks, valuable recommendations and their researching outcomes.

Thanks a lot for all who support IJST.

Editor-in-Chief
IJST
Abdul Jabbar Al- Shammari
The Referees for this Issue

The referees and advisory group below are listed according to alphabetical order, with deep appreciation for all.

Prof. Abdul-Jabbar N. Al-Shammari
Dept. of Medical Laboratory Sciences, Faculty of Sciences, Al-Balqa’ Applied University, Al-Salt, Jordan

Prof. Abdulbari A. Al-Faris
College of Veterinary Medicine, University of Basra, Iraq

Dr. Abdullah Sh. M. Al-Shebani
Dept. of food sciences, Faculty of Agriculture, Kufa University, Iraq

Dr. Abdul-Wahab R. Hamad
Al-Zarqa University College, Jordan

Dr. Ahmed A. Al-Darraji
College of Dentistry, University of Wassit, Iraq

Dr. Atheer A.R. Al-Douri
College of Veterinary Medicine, University of Baghdad, Iraq

Dr. Hala Al Daghistani
Dept. of Medical Laboratory Sciences, College of Sciences, Al-Balqa’ Applied University, Jordan

Prof. Harith F. Al-Mathkhour
College of Sciences, University of Baghdad, Iraq

Prof. Hazim J. Al-Darraji
Animal Resources Dept., College of Agriculture, University of Baghdad, Iraq

Dr. Ibraheem N. Al-Tarawneh
Dept. of Chemistry, Faculty of Sciences, Al-Balqa’ Applied University, Al-Salt, Jordan

Prof. Jamal A. Abbas
Faculty of Agriculture, Kufa University, Iraq

Prof. Riadh Al-Ramadani
Faculty of Medicine, Al-Balqa’ Applied University, Al-Salt, Jordan

Prof. Mahmoud M. Othman Matar
College of Medicine, Al-Najah National University, Palestine

Prof. Mjid A. Al-Attar
Turunto / Canda.

Dr. Moayyad Al-Khataybeh
Dept. of Chemistry and Laboratory Medicine, Faculty of Sciences, Al-Balqa’ Applied University, Al-Salt, Jordan

Prof. Najim A. Al-Jashami
Dept. of Physics, College of Sciences, University of Kufa, Iraq

Prof. Taha H. Al-Samarrai
College of Sciences, University of Samarra, Iraq

Prof. Ziad M. Abhood
Dept. of Physics, College of Education, Al-Mustansiriah University, Iraq.
TABLE OF CONTENTS

Articles in this issue are listed below according to alphabetical order, starting by English section and followed by Arabic section.

(I) **ENGLISH SECTION**

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conforming prevalence of Chrysomya bezziana (OWS) in north Basrah- south of Iraq</td>
<td>6-8</td>
</tr>
<tr>
<td>Mushtag A.M. A. Al-Helfi, Khawla B. N. Aljassim, Zainab M. S. Alklay & Waad M. H. Alfadheli</td>
<td></td>
</tr>
</tbody>
</table>

| Observational study of ovarian cancer in birds in Basra province | 9-11 |
| Mushtag A.M. A. Al-Helfi, Zainab M. S. Alklay & Khawla B. N. Aljassim |

| Pollution assessment of soil along highways among Basra-Nassiriya and Samawa cities by polycyclic aromatic hydrocarbons | 12-20 |
| Sattar J. Al- Khafaji & Iqbal J. Al-Saleh |
الدور الواقي للمستخلص الكحولي لمبايض الزعفران من التأثير التأكسدي لأحد السموم الفطرية في حوامل الفدان

(Mus musculus) زررت كريم التميمي، محمد غالي 22-26
Conforming prevalence of Chrysomya bezziana (OWS) in north Basrah- south of Iraq

Mushtag A.M. A. Al-Helfi, Khawla B. N. Aljassim, Zainab M. S. Alklay and Waad M. H. Alfadheli

Basrah Veterinary Hospital / Basrah / Republic of Iraq

E-mail: drmushtagalhelfi@yahoo.com

ABSTRACT

Basrah Province was endemic with OWS Chrysomya bezziana since 1998. Myiasis had been reported in various regions of Basrah Governate, except northern area (Qurna). In May 2017, cutaneous myiasis was reported in cattle which had deep injuries at neck with a heavy infestation of Chrysomya bezziana larvae. The present study investigated the prevalence of OWS in an area not explored before.

Keywords: OWS, Chrysomya bezziana
INTRODUCTION

Chrysomya bezziana OWS (old world screwworm) (1), belongs to Order: Diptera ; Family: Calliphoridae; Subfamily: Chrysomyinae; and Genus: *Chrysomya* (2). It is regarded as the most dangerous species of Genus *Chrysomya* and all other species of flies in the world, which causes obligatory myiasis only in alive animals and human (3). Old world screw worm had been noticed in Iraq since the seventies of the past century, but the first reported cases were in 1996 (4). Moreover, several studies had been conducted in Iraq since 1996 (5-13).

Ch. bezziana causes myiasis which is defined as: the infestation of alive tissues of human beings or animals by the larvae of *Ch. bezziana* causing tissue damage or maybe death (12,14,15).

Myiasis is classified into two types according to feeding method (10):

A-Specific myiasis which is divided into obligatory sarcobionts and facultative sarcobionts according to its feeding behavior.

B- Accidental myiasis, which occurs accidentally in the human body when eating food contaminated with eggs or larvae of *Ch. bezziana*or by the contact of invasive larvae to normal body openings like genitalia or urinary tracts (16).

MATERIALS AND METHODS

Heavy infestation of larvae was done by OWS with a deep injury in live 3 years cows. The larva were collected by sterile medical thumb forceps. Ten larvae were put in a sterile tube with 60% alcohol. Mature adult flies were obtained by growing the larvae with the soil in Petri dish. Larvae and adults were sent to Veterinary Entomological Laboratory /Basrah/ Iraq, in order to identify and characterize the worm.

RESULTS AND DISCUSSION

The results showed that the fly belonged to Diptera-Caliphoridae-*Chrysomya bezziana* OWS. *Chrysomya bezziana* species of insects were considered as dangerous types of insects in Iraq, which can threaten animals and human to cause myiasis in any parts of the body of living tissues only and maybe cause damage or death.

In Iraq, the first record of *Ch. bezziana* larvae in animals was reported in Baghdad in 1996 and published in 1999 (7). In Iraq, the first record of *Ch. bezziana* larvae in animals was reported in Baghdad in 1996 and published in 1999 (7). Al-Ainy revealed that *Ch. bezziana*threatens animals are existed in Arab Area (5). *Chrysomya bezziana* larvae in human were firstly recorded in Basra, south of Iraq (4), in buffalo (12,17), in sheep (6). Al- Ani et. al. (2005) had studied the effects of Gama Radiation on pupa of *Ch. Bezziana* (18). The number of animals infested with *Ch. bezziana* were 120789 reported in Iraq as well as 22 cases were reported in human from 1998 to 2007 (11). Out of the total human cases, 8 cases of *Ch. bezziana* larvae were reported in Basra province (10), who studied the morphological taxonomy of Diptera :Calliphoridae in the middle area of Iraq. Many reports of *Myiasis* indicated the infestation of animals in Basra by *Ch. bezziana* larvae such as sheep, cattle, dogs, camels, bufaloes and horses (9,10).

Many cases of myiasis by *Ch. bezziana* were reported in Arab countries and the Islamic Republic of Iran, from Arabia Saudi (19), to Iraq and Arabian Gulf as well as Oman, and the United Arab of Emirates (18), which were considered as endemic area by *Ch. Bezziana*, which crossed to Bahrain in 1977 by infected sheep (17), and in 1978 infestation by *Ch. Bezziana* larvae was recorded in Bahrain (20).

In Kuwait, *Ch. Bezziana* was recorded. In Suadi Arabia, there were 11 cases of *Chrysomya bezziana* larvae as ophthalmic myiasis (18,21). In Sultanate of Oman Spradbery (17) recorded 82 cases of *Ch. bezziana*. In Iran, cases were recorded by Humphry et. al. (20).

It causes economical loss and affects animals by making their skin torn and damaged and consequently become of less in value. In addition, larvae cause severe pain, nervousness, laminas, blindness, abortion, decrease of milk production, anomalies, anemia and bad behavior (11). It is classified as type B disease (20). A heavy infestation of *Ch. bezziana* larvae was found in the head of two young girls suffered from head lice infestation caused hard pain, bad smell, headache and restless (6). *Ch. bezziana* plays a serious role in the mechanical transport of causative disease and humans can be infected in this way although they can be infected with nasal or cutaneous myiasis (22). The female produces around 3000 eggs during its life cycle and looks for blood to obtain protein in order to produce other eggs. Parasitic infestation with the larvae of *fly* in traumatics lesions of vertebrate living tissues is a dangerous medical case in human and social health and also is deemed as an economical cause of losing domestic animals (23).

Ch. bezziana can infect human and animals. OWS Myiasis causes 95% of 10 cases in cows in New Guinea (24). It was revealed that 84-95% of infective cows with Myiasis in Malaysia hade 30% mortality in newborn calves (3). Three hundred thousand cows were dead by Myiasis in Zimbabwe during the period from 1973-1978 (3). Myiasis caused by *Ch. bezziana* infested 26.3% in sheep, 20% in ewes, 16.4% in buffalo, 13% in camels and 10% in cows (25). Myiasis can be caused by *Ch. bezziana*, Tics, Lice, Mites, Dog bits, FMD disease, injuries and barbed wire surrounding animals, their role as predisposing factors led OWS adult flies to find the best and safe media alongside with humidity, mild temperature,and green trees to spread and increase their numbers causing a wide range of infestation in Basra. Mean temperature degree, % Humidity, Dust and Rain are measured monthly depending on Al-Basra forecast office. The number and type of infested animals were observed and studied in all stations. This report confirm the
occurrence of *Ch. bezziana* innowth of Basrah (Al-Gurna) which was considered free area for this type for several years ago. Accumulation of animals (cattle, buffaloes and sheep) with low hygiene lead to this fly to OWS to reach at this area of Gurna from south and middle of Basrah which were had several infestations in animals and human since from 1998.

REFERENCES

Observational study of ovarian cancer in birds in Basra province

Mushtag A.M. A. Al-Helfi, Zainab M. S. Alklay and Khawla B. N. Aljassim

Basrah Veterinary Hospital / Basrah / Republic of Iraq

E-mail: drmushtagalhelfi@yahoo.com

ABSTRACT

The goal of this study was to report tumor in birds that lives in such conditions. Two hundred pigeons were investigated between 2014-2016, for the presence of ovarian tumor in Basrah Governorate. The judgments of presences of tumor based upon; size of ovary in examined pigeon compare to healthy anatomical standard ovaries. Result reveals the presence of ovarian tumors in 10 pigeons (5% of total), the size of tumor varies between 4 to 10 cm. The pigeons with tumor were died. The presence of tumors in birds may indicating the pollution of environment, since Basrah governorate rich with oil wells and fertile land for agriculture.

Keywords: Ovary, Tumor, Pigeon
INTRODUCTION

Tumors come in two main types: the benign (non-cancerous) and the malignant (cancerous) kinds. Either type of tumor can be life-threatening to pet birds, but benign growths are generally considered to be less serious than malignant tumors. Benign tumors tend to stay within one location in the body and do not spread to other areas. They may still grow, but they proliferate very slowly," explained Richard Nyne, DVM, a veterinarian in Illinois. He said benign tumor can normally be removed without too much trouble, and in most cases, do not come back.

Malignant tumors, on the other hand, can invade and damage nearby tissues and organs. This is system done through the process of metastasis, wherein cancer cell break away from a malignant tumor and travel through the bloodstream or lymphatic system to form new, secondary tumors in other parts of the body. Even if a malignant tumor also tends to grow faster than benign tumors.

Many times though, a lump is actually a cyst. A cyst is a tissue sac that is filled with fluid or other loose material. Feather cysts, for instance are filled with keratin. Cysts are not cancerous and do not grow or spread like tumors do, although they might get bigger because they have fluid inside, "noted David Phalen, DVM, an avian researcher and associated professor at Texas A & M University. Cysts are generally not serious. In contrast, a tumor (or "neoplasm" as it's known by medical professionals) is a solid mass of tissue and depending on the type of tumor, it may grow very quickly and spread. A tumor can occur anywhere on the body, and may protrude from the skin, under the skin, or grow inside the body. Tumors are usually much more urgent matters than the other kinds of lumps and bumps just mentioned.

Al-Helfi (1) improved that’s the insecticides as a good source to cause cancer in human and animals when they eat or drink polluted food or drink which accumulated and precipitated in adipose tissue then led to irritate cells and made tumor.

"Vitamin-A deficiency and repeated skin injuries may make birds more susceptible to this type of cancer, "Speculated Larry Nemetz , DVM, an exotics-only veterinarian in Santa Ana, California. Tumors of the fibrous, connective tissue – fibromas or "fibroid tumors", which are benign and fibro sarcoma which are malignant are commonly seen in pet birds. These are fairly easy tumor to spot and may simply show up as an unusual pump on the skin or they may be a couple feathers sticking up in a strange way on the birds body,"Nye said. Fibroids and fibro sarcomas appear on the wings, leg, junction of the beak and face, neck and sternum. The birds most often involved are budgerigars, parakeets, cockatoos, macaws.

Probably the most common internal tumor in pet birds is an abdominal mass, which is a tumor of either the reproductive organs (ovaries or testicles) or kidney. These could be either malignant or benign. Abdominal masses are most often seen in budgies that are between 5 and 8 years of age, according to Burge. More often than not, these types of tumors are not detected until the birds is emaciated and acting very sick. This, Burge said, "can be due to the pressure the tumor puts on the digestive tract, making it difficult for food to pass through, or droppings may accumulate around the vent causing blockage." Some of these birds may be presented with labored breathing as the main symptom due to the large tumor causing collapse of the air sacs. Lameness may also be a presenting sign when the tumor puts pressure on the nerve supply to one leg (2).

Many birds also develop cancer of the lymphatic system. In a healthy animal, the lymphoid system is an important part of the body's immune system defense against infectious agents such as viruses and bacteria. Lymphoid tissue normally is found in many parts of body including lymph nodes, liver, spleen, gastrointestinal tract and skin. If malignant cells invade these tissues, the disease is known as lymphosarcoma. If the cells are benign the disease is called lymphoma.

Lipomas are benign tumors that are composed of mature fat cells. "Most of them are found just under the skin, rarely filtrating into muscle or organ,"Burge noted. They are commonly found on the upper chest and over the abdomen, although may be found in other location of bird's body. "Lipomas don't usually cause birds a lot of problem unless they get so big that they interfere with leg movement. If they are becoming a problem, many times putting the bird on a low-fat diet will be enough to shrink down the fatty tumor, or even get rid of it all together. In extreme cases, Lipomas can also be surgically removed. These tumors generally occur in overweight birds and are most commonly seen in budgerigars; and Gallah , rose-breasted and sulphur-crested cockatoos (3). Unlike the other tumors on this list, papillomas are not caused by out-of-control cells but by a virus called Psittacid herpes virus. Papillomas appear as wart-like lesions of the oral cavity of the mouth and of the vent. "The lesion are benign, and can sometimes come and go without treatment" (4), Phalen noted. "Other times they just keep getting worse and worse and can be very irritating to the bird and start bleeding." In that situation, the papillomas would need to be surgically removed. South American species (especially Amazons and macaws) are seen with papillomas more often than other species.

Predisposing factors (5):
1. Pesticide.
2. Insecticide.
3. Illegal fish hunter.
4. Radiation.
5. Drugs.
6. Oil companies waste.
7. War scraps.
MATERIALS AND METHODS

When we made post mortem lesions to infected birds, we observed a mass surrounded of ovary it's been like big egg but it is like a fiber tissue with many layers. This mass was suspected primary as mature eggs when its removes by medical scalpel its indicate as a tumor (ovarian tumor). Measures and weight of masses were reported as new information of bird cancer.

RESULTS AND DISCUSSION

The results showed 5% of local birds in Basrah province have ovarian cancer. All areas of Basra are contaminated environment with many factors (air, soil, water, plants), which are natural environment to birds. Results showed that the insecticide, radiation, many drugs and hormones, pesticide, which lead to cancer to occur. Results showed also that many hormones when gave as a growth hormones with feed of bird with illegal process were accumulated in adipose tissue of body like ovary, or brain or joints or may be liver. Basra province showed many wars with many type of common fatal with chemicals weapons which polluted soil, water and air of Basra and Iraq. Cancer has two types benign or malignant. In birds, the fatty tumor is benign type.

REFERENCES

Pollution assessment of soil along highways among Basra-Nassiriya and Samawa cities by polycyclic aromatic hydrocarbons

Sattar J. Al-Khafaji and Iqbal J. Al-Saleh

Dept. of Geology / College of Sciences / Basra University / Republic of Iraq

E-mail: Khafaji52000@yahoo.com

ABSTRACT

The industrial and vehicular emissions are the most potential sources of polluted soil by aromatic hydrocarbons, these pollutants have a significant impact on human health. The present study was carried out to assess the pollution of agricultural soil by polycyclic aromatic hydrocarbons (PAHs) along the highways between Basra, Nassiriya, and Samawa, southern Iraq. The soil samples were collected from 6 boreholes (50cm depth) located in some agricultural sites closest to both sides of the highways. The PAHs concentrations were determined using High-Performance Liquid Chromatography (HPLC). Some factors that control the distribution of PAHs were also measured such as pH, EC, grain size of soil and TOC. The results showed that the concentrations of PAHs were variable with depths controlled by clay and TOC content of samples. The low molecular weight (LMW) and high molecular weight (HMW) hydrocarbons exceed the international allowable limits in soil, especially for the samples closest to the highways in Nassiriya and Samawa stations respectively, the increases of PAHs concentration is related to the high emissions of exhausts cars, vehicles and the waste of industrial oil that spread near the highways.

Keywords: Basra; PAHs; Boreholes; Industrial emissions; Soil
INTRODUCTION

Polycyclic Aromatic Hydrocarbons (PAHs) are a major group of organic pollutants that are widely extent in the environment and carcinogenic, mutagenic, and toxic to all organisms (1,2). PAHs enter the environment through a number of sources, especially combustion processes, such as wood burning, oil industry, motor vehicle exhaust, cigarette smoking, cooking and agricultural waste burning (3). PAHs also originate from a variation of processes, containing combustion, slow maturation of organic matter and the short degradation of biogenic precursors (4,5). Nevertheless, a considerable number of these organic pollutants still persist in the environment because of their a long half-life and illegal production and use (6). The highways are the most polluting sources because they have been account between 46-90% of total PAHs (7,8). They are considered road and highway surfaces are impervious, and serve as temporary sinks for various types of pollutants. PAHs assemblage can be divided into two major groups with respect to their molecular weight. The first group includes the light (low molecular weight) compounds with two or three fused aromatic rings refer to its petrogenic origin from oil and its derivatives, fuel, lubricants, spills and accidents (9). Low molecular weight consists of: Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, and Carbazole. The second group includes the heavy (high molecular weight) compounds with four or more fused aromatic rings consisting of: Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)Pyrene, Indeno(1,2,3,c,d) Pyrene, Dibenzo(a,h) anthracene, Benzo (g,h,i) perylene, heavy PAHs with (5-6) benzene rings, especially dibenzo(a,h)anthracene [D(a)A] and benzo [a] pyrene [B(a)P], and Benzo [a] anthracene [B(a)P], referring to the pyrogenic source originated from the generation of oxygen with high heat of any combustion of fuel, coal and wood (10). PAHs are abundant in soils and sediments, freshwater, and atmosphere where the more health hazardous congeners (11). In urban soil the Industrial and vehicular emissions and road dust are the potential sources of metals and hydrocarbons, these pollutants have a significant impact on human health, plant and system, these potentially toxicants enter into food chain through plant and also accumulate in the human body via direct ingestion, inhalation and hand to mouth pathways (12). When these pollutants enter the environment and especially the soil and have undergone different physical, chemical, and biological effects, including adsorption, oxidation, photolysis and biodegradation (13,14). PAHs released in to the soil through a variety of sources include agricultural runoff, vehicle exhaust emission, and fossil fuel spillage (15). The exposure to PAHs has been associated with increased risks of various cancers lungs, bladder, skin, urinary and gastrointestinal systems, (16-18), cell damage via gene mutation (19-21), oxidative stress and cardiovascular diseases (22-25). Thus, there is a need for the studies on hydrocarbons pollution /accumulation in urban soils in order to safe guard human health, particularly children and old age persons and systems (26-28). The aim of the present study is to identify and study the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in selected agricultural sites along to the highways between Basra, Nasiriya and Samawa and their impact on soil.

MATERIALS AND METHODS

Soil sampling:

Field work was carried out at November 2/11/2016, samples of 30 agricultural soils were taken from six boreholes at depth(50)cm. Dugged along both sides of the highway between Basra, Nasiriya and Samawa area (Figure 1). Most of these sites were affected by the presence of the waste of cars, tires, oils and full transported by vehicles, as well as the presence of oil installation. The borehole samples were taken using plastic tube the lower and upper end of plastic tube were covered and tide by plastic bags. Field notes were recorded on the out side of tube. The tubes were transferred to the laboratory.
Physical and chemical analysis of soil samples:

The Grainsize analysis of 18 selected samples was conducted from the study site at the Department of EarthSciences/college of Science- Basra according to the American Standard for testing and materials Classification ASTM: C136, 2003 (0.2, 0.1, 0.500, 0.250, 0.125. 0.063) mm, pipette method were used to separating the silt from clay fraction according to Folk,1974. The content of total organic carbon analyzed by using the method of Walkly and Black,1934. pH and EC of soil were determined using pH and EC meter type HANNA-HI 9811 according to method of McLean,1982.

PAHs analysis:

The extraction method of PAHs from soil samples was applied using the method of Grimalt and Olive (29) and Wang et al., (30). Twenty five grams of soil were soxhlet extracted for 24 hours with 250 ml methanol: benzene (1:1). Sulfur element was removed from the extracts using activated elemental copper in order to avoid sulfur interferences when using HPLC device. The extracts were then fractionated into aliphatic and aromatic hydrocarbons by columnchromatography. The column was prepared by slurry packing 10 g of silica (100-200 mesh), followed by 10 g of alumina (100-200 mesh) (silica-gel and alumina were activated at 200°C for 4 hours and then partially deactivated with 5 % water) and finally 1 g of anhydrous sodium sulphate was added to the surface to avoid disturbance of the top layer when adding the solvent. The extract was then applied to the head of the column and eluted 25 ml of benzene to yield the aromatic hydrocarbons. The aromatic fractions were concentrated using rotary evaporator, transferred to a vial, after that 5-10 ml of n-hexane were added to the a vial containing (1) gm of the dried powdered sample, then the samples was transferred to HPLC (A high- performance liquid chromatography system), (Agilent 1200,USA) the work of this device relies on the physical separation of the active material through two phases, the first is static and the second is active, the solution sample and mobile phase solution are placed in the device, the mobile phase is passed on the separation column for a period not less than half an hour, the device then inject a small quantity from the sample solution(Microliter) and pass through the mobile phase and separated through the separation column. And the results of concentrations of PAHs and chromatograms were compared to the standard samples.

RESULTS AND DISCUSSION

The grain size analysis showed that the soil of the study area consisting of silty sand and sandy silt with a little proportion of clay, the silt fraction represents the principle component of soil by mean (60%), while the sand fraction (29%), and the clay (11%) (Table 1, Figure 2). The percentage of organic matter in range from 1.199 to 5.59% by mean 4.48%. The soil of the study area was classified as a weak alkaline soil to a strong alkalinity,pH range between7.51 and 8.5 by mean 8.03. From the other hand, the high-salinity of soil (1.37- 8.92)ms/cm related to the high salt content (Table 2).
Table (1): Grain Size analysis (%) in Studied Boreholes.

<table>
<thead>
<tr>
<th>Station</th>
<th>Sample</th>
<th>Depth</th>
<th>Sand%</th>
<th>Silt%</th>
<th>Clay%</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1(BH.1)</td>
<td>S1</td>
<td>0-20</td>
<td>73</td>
<td>25</td>
<td>2</td>
<td>Silty Sand</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>76</td>
<td>22</td>
<td>2</td>
<td>Silty Sand</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>76</td>
<td>21</td>
<td>3</td>
<td>Silty Sand</td>
</tr>
<tr>
<td>N2(BH.2)</td>
<td>S1</td>
<td>0-20</td>
<td>34</td>
<td>61</td>
<td>5</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>20</td>
<td>73</td>
<td>7</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>23</td>
<td>69</td>
<td>8</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td>N3(BH.3)</td>
<td>S1</td>
<td>0-20</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>22</td>
<td>66</td>
<td>12</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>20</td>
<td>12</td>
<td>68</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td>N5(BH.4)</td>
<td>S1</td>
<td>0-20</td>
<td>14</td>
<td>74</td>
<td>12</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>9</td>
<td>78</td>
<td>13</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>8</td>
<td>87</td>
<td>5</td>
<td>Silt</td>
</tr>
<tr>
<td>N6(BH.5)</td>
<td>S1</td>
<td>0-20</td>
<td>18</td>
<td>72</td>
<td>10</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>31</td>
<td>65</td>
<td>4</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>30</td>
<td>59</td>
<td>11</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td>N7(BH.6)</td>
<td>S1</td>
<td>0-20</td>
<td>22</td>
<td>68</td>
<td>10</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>20-40</td>
<td>10</td>
<td>80</td>
<td>10</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>40-50</td>
<td>10</td>
<td>78</td>
<td>12</td>
<td>Sandy Silt</td>
</tr>
</tbody>
</table>

Figure (2): The percentages of Sand, Silt and Clay in soils of Study Area

Table (2): Min, Max, Mean and St.dev of some physical properties in the study area.

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St.dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.51</td>
<td>8.5</td>
<td>8.03</td>
<td>0.23</td>
</tr>
<tr>
<td>EC ms/cm</td>
<td>1.37</td>
<td>8.92</td>
<td>3.97</td>
<td>1.98</td>
</tr>
<tr>
<td>TOC%</td>
<td>1.99</td>
<td>5.59</td>
<td>4.39</td>
<td>0.83</td>
</tr>
</tbody>
</table>

The concentration of polycyclic aromatic hydrocarbons were variable with depths. The (LMW) and (HMW) have been distinguished in all soil samples. The highest concentration of PAHs (LMW and HMW) was recorded at BH.6 in Samawa station 531.021 ppb at depth (40-50) cm with total concentration 1939. 571ppb, PAHs have been identified:acenaphthene, fluoranthene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene, benzo(ghi)perylene. Whereas the lowest concentration of PAHs was found at BH.1 in Nasiriya station (0.29 ppb) at depth (30-40) cm, the total concentration (240.2909 ppb), and the PAHs have been identified:acenaphthene, phenanthrene, fluoranthene, pyrene (Table 3, Figure 3).
PAHs were commonly occurred in soils of study area and in all different depths. Variation in the concentration may be due to: the nature of the soil texture, the proximity to the source of pollution, the concentration are decreased with increasing particle size of soil, the smaller particles (clay and silt) had higher PAHs (31). The high organic content of soil can adsorb PAHs on surface of soil (32). Heat and evaporation rate are important factor controlling the concentration of PAHs at the surface (33). Besides the presence of residues of tires, oil hydrocarbon spill and emission of vehicles near high way, the carcinogenic hydrocarbons have vary concentrations in different depths. The highest concentration observed at BH.1(Nasirya Station) about 4.31ppb in depth (20-30cm) with total concentration about 9.88mg/kg and the lowest value observed in BH.3 (Nasirya Station) about 0.09ppm in depth (10-20 cm).

Table (3): Concentrations of Polycyclic Aromatic hydrocarbons (PAHS) in the study area (ppb) dry weigh

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0.84</td>
<td>0.92</td>
<td>0.15</td>
<td>0.75</td>
<td>0.26</td>
<td>0.26</td>
<td>0.56</td>
<td>0.38</td>
<td>0.21</td>
<td>0.32</td>
<td>0.15</td>
<td>0.32</td>
<td>0.31</td>
<td>1.02</td>
</tr>
<tr>
<td>10-20</td>
<td>0.96</td>
<td>0.79</td>
<td>0.26</td>
<td>0.07</td>
<td>0.79</td>
<td>0.06</td>
<td>0.79</td>
<td>0.06</td>
<td>0.79</td>
<td>0.06</td>
<td>0.79</td>
<td>0.06</td>
<td>0.79</td>
<td>0.06</td>
</tr>
<tr>
<td>20-30</td>
<td>0.06</td>
</tr>
<tr>
<td>30-40</td>
<td>0.03</td>
</tr>
</tbody>
</table>

PAHs were commonly occurred in soils of study area and in all different depths. Variation in the concentration may be due to: the nature of the soil texture, the proximity to the source of pollution, the concentration are decreased with increasing particle size of soil, the smaller particles (clay and silt) had higher PAHs (31). The high organic content of soil can adsorb PAHs on surface of soil (32). Heat and evaporation rate are important factor controlling the concentration of PAHs at the surface (33). Besides the presence of residues of tires, oil hydrocarbon spill and emission of vehicles near high way, the carcinogenic hydrocarbons have vary concentrations in different depths. The highest concentration observed at BH.1(Nasirya Station) about 4.31ppb in depth (20-30cm) with total concentration about 9.88mg/kg and the lowest value observed in BH.3 (Nasirya Station) about 0.09ppm in depth (10-20 cm). The high concentration of carcinogenesis PAHs (Benzo(a) Anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a) pyrene, Indeno(1,2,3-cd)pyrene and dibenzo(ah)anthracene) may be attributed to the presence of the remain of cars exhausts and the industrial oils that spread in the study area as well as the distance of sample from high way. The positive correlation between TOC% and total PAHs (r = 0.178, P < 0.05), explains the effect of organic matter that controlling the distribution of aromatic compounds in soil and sediments (34). From the other hand the weak negative correlation was found between the acidic pH and electrical conductivity EC with values of aromatic compounds PAHs mean that the acidic pH and electrical conductivity EC did not have a clear effect on the behavior of aromatic compounds.
A weak correlation between PAHs, pH, EC and a weak positive correlation with TOC at level \(p<0.05 \) indicates that the source of PAHs in the study area is not a natural source but also a result of human activities (35) (Table 4).

Most of the concentration of PAHs compounds in study area have been exceeded the international and local permitted limits especially for carcinogenic compounds (Benzo (a) Anthracene B(a)A, Chrysene (Chr), Benzo (b) Fluoranthene B(b)F, Benzo(k) Fluoranthene B(k)F, Benzo (a) Pyrene B(a)P, Indeno(1,2,3-cd) Pyrene (Indp) Pyren and Dibenzo (a,h) Anthracene, such as (Italian legislation, 1999), (Netherlands-(36-44)) (Tables 5 and 6).

Figure (3): The HPLC analysis of some selected samples of study area.

1. Concentration of PAHs in BH.1 with depth(0-10)cm.
2. Concentration of PAHs in BH.2 with depth(10-20)cm.
3. Concentration of PAHs in BH.3 with depth(20-30)cm.
4. Concentration of PAHs in BH.4 with depth(10-20)cm.
5. Concentration of PAHs in BH.5 with depth(20-30)cm.
6. Concentration of PAHs in BH.6 with depth(30-40)cm.
Table (4): Correlation coefficient (r) between different parameters in soil at study area.

<table>
<thead>
<tr>
<th>Pearson Correlation</th>
<th>PAHs</th>
<th>TOC</th>
<th>pH</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td></td>
<td>0.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td>-0.419***</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed)

Table (5): Comparison the concentrations of polycyclic aromatic hydrocarbon (ppb) in study area with their allowed limits in international studies

<table>
<thead>
<tr>
<th>Comp Ref</th>
<th>Nap</th>
<th>ACY</th>
<th>ACE</th>
<th>FLU</th>
<th>PHE</th>
<th>ANT</th>
<th>FLUA</th>
<th>PYR</th>
<th>B(a)A</th>
<th>CHR</th>
<th>B(b)F</th>
<th>B(k)F</th>
<th>B(a)P</th>
<th>Dib(ah)A</th>
<th>Ind (1,2,3)</th>
<th>B(ghi)P</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO and IPCS, 1998)</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Italian legislation, 1999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.51</td>
<td>0.12</td>
<td>2.6</td>
<td>-</td>
<td>0.25</td>
<td>10.7</td>
<td>-</td>
<td>2.4</td>
<td>0.26</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
</tr>
<tr>
<td>Present study</td>
<td>114.17b</td>
<td>2541.352</td>
<td>40.157</td>
<td>87.1</td>
<td>47.193</td>
<td>62.307</td>
<td>17.011</td>
<td>0.2778</td>
<td>10.795</td>
<td>1.8525</td>
<td>1.9652</td>
<td>4.9939</td>
<td>1.0724</td>
<td>12.6333</td>
<td>5.51</td>
<td>3.446</td>
</tr>
</tbody>
</table>

* Italian legislation, 1999 : Maximum concentrations allowed by the Italian legislation for industrial uses of soils (GazzettaUfficialeRepubblicaItaliana no. 293 del 15-12-1999).
* Netherlands: "Maximum Permissible Concentrations" (MPCs) for PAHs in soil (Kalf et al., 1997).
* + - ± : PAHs compounds and their carcinogenic effects according to (WHO and IPCS, 1998). Where +, positive evidence of carcinogenic effects, -, negative , ±, questionable.

Table (6): Comparison the concentration of TPAHs study area (ppb) with other local studies

<table>
<thead>
<tr>
<th>Studied Areas</th>
<th>PAHs</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirkuk- Iraq</td>
<td>0.14-39.33</td>
<td>Al- Dabbas et al., 2014</td>
</tr>
<tr>
<td>Baghdad City</td>
<td>0.3–5.17</td>
<td>Husain, 2003</td>
</tr>
<tr>
<td>Basra City</td>
<td>0.3–7.0</td>
<td>Shihab-Alడından and Aziz, 2013</td>
</tr>
<tr>
<td>Iraq Marshes</td>
<td>1.3–4.65</td>
<td>Abdul-Kader et al., 2013</td>
</tr>
<tr>
<td>street dust-Beijing (China)</td>
<td>0.27–1.30</td>
<td>Wang et al, 2010</td>
</tr>
<tr>
<td>Vicinity- Highway USA</td>
<td>164-812</td>
<td>Samimi et al., 2009</td>
</tr>
<tr>
<td>New york- Highway USA</td>
<td>17–90</td>
<td>Larsson and Sahlberg, 1982</td>
</tr>
<tr>
<td>Surface Soil</td>
<td>95–212</td>
<td>Mohammad et al., 2017</td>
</tr>
<tr>
<td>Gwangju City- Korea</td>
<td>903.998–1039.571</td>
<td>Present Study</td>
</tr>
</tbody>
</table>

** CONCLUSION **

Polycyclic aromatic hydrocarbons (PAHs) contain the largest class of hazards and cancerous, while un carcinogenic may act as synergists. The increases of PAHs concentrations are due to the high emission of exhausts cars in the high ways, the remains of tires and industrial oil wastethat on road side area are considered the main pollution source of PAHs in soil. Soil have high concentration of TOC and contain high proportion of silt represent about 60% and 29% of clay.

The natural and human activities played an important role in increases the concentration of PAHs in soil. In study area the concentration of LMW and HMW had exceeded the international allowable limits in soil, especially for the areas closest to the highway where the highest total concentration of aromatic compounds reach1039.571ppb and 727.888 in Samawa and Nasiriya stations respectively. So the study area is highly polluted with polycyclic aromatic hydrocarbons, due to the car exhaust, the residues of tires, industrial oils and other industrial waste dumped near the high way which increase the concentrations of these contaminants.
REFERENCES

قسم الدراسات والبحوث العربية

ARABIC STUDIES AND RESEARCHES SECTION
The protective role of saffron stigmas alcohol extract from oxidative effect of a fungal toxins in pregnant albino swiss mice (Mus musculus)

Zainab Al- Timimi and Prof. Mohammad A.H. Gali

Dept. of Biology / College of Sciences for Women / University of Baghdad / Republic of Iraq

ABSTRACT

This study sought to determine the effect of saffron on the elimination of oxidative effect of Ochratoxin-A. Fifteen female mice were divided into three groups, Sublethal concentration of saffron 100 mg / kg, and sub lethal concentrations of Ochratoxin-A 1mg/kg . The animals were given Ochratoxin-A once a day during days (1-14) of pregnancy, and the second group was given Ochratoxin-A with saffron extract and in conjunction with the fungal toxin once a day during days (1-14) of pregnancy. The control group animals were given saffron extract only. A number of parameters were studied including differences in body weight of the mice before mating and after the end of the experiment , and measurement of the level of oxidative enzymes, Arginase and Malondialdehide enzymes and their antioxidant enzymes, Catalase and Peroxidase in postpartum mice after the period of pregnancy . The study shows a significant decrease in the weight of pregnant mice in the group Ochratoxin-A group at 1mg / kg. The results show a significant decrease in the weight of pregnant mice with the groups of Ochratoxin-A in 1 mg / kg concentration and saffron extract.

The results showed significant increase in the Arginase and MDA concentrations, and a significant decrease in the level of Catalase and Peroxidase concentration after the treatment of Ochratoxin-A. The results also showed that the saffron extract significantly reduced the concentration of oxidant enzymes, and significant increase in the concentration of antioxidant enzymes.

The study concluded that Ochratoxin-A has a negative effect on pregnant mice, and saffron has a role in reducing this effect as a protective agent.
Sublethal concentration) TuniW649Ofin

Q TuniW641OmediTuniW644Oini

Sublethal concentration) TuniW649Ofin

ق TuniW641OmediTuniW644Oini

Metabolic oxidative stress (cytotoxicity effect) 101 (10H8) TuniW644OmediTuniW644Oini

تتضمن النتائج وجدت أن مستويات الزراعة كان لها تأثير كبير على النمو وصحة الفتيان. كلاً من مستوى DMA (Nitrogen) وMA (Sodium) وK (Potassium) كان له تأثير إيجابي على النمو وصحة الفتيان. وجدت نتائج لاستنتاج، فإن ارتفاع مستوى DMA وMA وK من خلال استخدام الزراعة يمكن أن يكون له تأثير إيجابي على النمو وصحة الفتيان.
Induced Renal Injury in an Acute Toxicity Rat Model. J. Toxins. 8(12),373.

N.B The views expressed in this issue are of the authors and do not necessarily reflect the views of the Editorial Board or the policies of the publisher.

Copyright © 2018 by the International Centre for Advancement of Sciences and Technology.
All rights reserved. No part of this publication may be reproduced or copied in any form or by any means without prior written permission from the Editor-in-Chief of the Journal.